Search results

Search for "mesoporous α-Mn2O3" in Full Text gives 1 result(s) in Beilstein Journal of Nanotechnology.

Manganese oxide phases and morphologies: A study on calcination temperature and atmospheric dependence

  • Matthias Augustin,
  • Daniela Fenske,
  • Ingo Bardenhagen,
  • Anne Westphal,
  • Martin Knipper,
  • Thorsten Plaggenborg,
  • Joanna Kolny-Olesiak and
  • Jürgen Parisi

Beilstein J. Nanotechnol. 2015, 6, 47–59, doi:10.3762/bjnano.6.6

Graphical Abstract
  • such as particle size, surface area and Mnx+ oxidation state is required. Here, Mn3O4 and Mn5O8 nanoparticles as well as mesoporous α-Mn2O3 particles were synthesized by calcination of Mn(II) glycolate nanoparticles obtained through an economical route based on a polyol synthesis. The preparation of
  • performance for the mesoporous α-Mn2O3 species. Keywords: electrocatalytic activity; in situ X-ray diffraction; manganese glycolate; manganese oxide nanoparticles; mesoporous α-Mn2O3; Introduction Manganese oxides are a class of inexpensive compounds with a high potential for nanostructuring, which makes
  • the further synthesis of manganese oxides, because the control of the morphology and size of the particles is a major issue for their catalytic applications. The subsequent calcination process yielded Mn3O4 and Mn5O8 nanoparticles as well as mesoporous α-Mn2O3 particles with high surface areas of 300
PDF
Album
Supp Info
Full Research Paper
Published 06 Jan 2015
Other Beilstein-Institut Open Science Activities